Factors, Prime Numbers \& Composite Numbers

by Carol Edelstein

Definition

- Product - An answer to a multiplication problem.

$$
7 \times 8=56
$$

Definition

- Factor - a number that is multiplied by another to give a product.

$$
7 \times 8=56
$$

Definition

- Factor - a number that divides evenly into another number.

$$
56 \div 8=7
$$

Test yourself...

What are the factors and products?

$$
\begin{aligned}
& \text { 1) } 6 \times 7=42 \longrightarrow \begin{array}{l}
\text { Factors } 6 \text { and } 7 \\
\text { Product: } 42
\end{array} \\
& \text { 2) } 63 \div 9=7 \longrightarrow \begin{array}{l}
\text { Factors: } 7 \text { and } 9 \\
\text { Product: } 63
\end{array} \\
& \text { 3) } 8 \times 5=40 \longrightarrow \begin{array}{l}
\text { Factorss } 5 \text { and } 8 \\
\text { Product: } 40
\end{array}
\end{aligned}
$$

Definition

- Prime Number - a number that has only two factors, itself and 1.

Example: 7 is prime because the only

 numbers that will divide into it evenly are 1 and 7.
Examples of Prime Numbers

$$
\begin{aligned}
& 2,3,5,7,11,13,17 \\
& 19,23,29,31,37 \ldots
\end{aligned}
$$

Definition

- Composite number - a number that has more than two factors.

Example: The number 8. The factors of 8 are $1,2,4,8$.

Examples of Composite Numbers

$$
\begin{aligned}
& 4,6,8,9,10,12,14 \\
& 15,16,18,20,21, \ldots
\end{aligned}
$$

One is special because . .

Sne is not prime.

(because it does not have exactly two different factors).

One is not Composite.

(because it does not have more than 2 factors).

Definition

- Prime Factorization - A way to write a composite number as the product of its prime factors.

$$
\begin{aligned}
2 \times 2 \times 3 & =12 \\
2^{2} \times 3 & =12
\end{aligned}
$$

How to do a Prime Factorization

- - Factor Tree Method - -

Step 1 - Write down any composite number.

Step 2 - Start dividing by

the prime \#s (start with 2).
If the composite number is divisible by 2 , write it down and find the next factor.
If not, check if the factor is evenly divisible by $3,5,7,9$, etc.

How to do a Prime Factorization

- - Factor Tree Method - -

Step 3 - Check the factors.
If they are prime, you are done.
If they are not, proceed to Step 4.

Step 4 - Continue dividing.

If one of the factors is
divisible by 2 , write it down
and find the next factor.
If not, check if the factor is evenly divisible by $3,5,7,9$, etc.

How to do a Prime Factorization

- - Factor Tree Method - -

Step 5 - Check the factors. If they are prime, proceed to Step 6. If they are not, repeat Step 4.

How to do a Prime Factorization

- - Factor Tree Method - -

Step 5 - Check the factors. If they are prime, proceed to Step 6. If they are not, repeat Step 4.

Step 6 - Write the Prime Factorization in Exponential Form.

Find the Prime Factorization

4

Find the Prime Factorization

6

Prime Factorization

$2 \times 3=6$

Find the Prime Factorization

27

3×9

Pimmatatiatan $-3 \times 3 \times 3$

Find the Prime Factorization

12

2×6

$2 \times 2 \times 3$
$=2^{2} \times 3=12$

Find the Prime Factorization

18

2×9

You Have Options

The following screens illustrate another method that you can use to find the Prime Factorization of a Composite Number.

Try it! You may like it better.

How to do a Prime Factorization

- - Ladder Method - -

Step 1 - Write down any composite number.

$2 \mid 18$
9

Step 2 - Start dividing by the prime \#S (start with 2).
If the composite number is divisible by 2 , write it on the left of the L and write the other factor below the original composite \#.
If not, check if the number is evenly divisible by 3,5 , etc.

How to do a Prime Factorization

- - Ladder Method - -

Step 3 - Check the factors. If they are prime, proceed to Step 6. If not, continue the process.

Step 4 - Continue dividing the \# on the next rung of the ladder by the prime \#s (start with 2).

Step 5 - Repeat this process until the \# on the next rung of the ladder is prime.

How to do a Prime Factorization

- - Ladder Method - -

Step 6 - Write the Prime Factorization in Exponential Form.

Find the Prime Factorization

- - Ladder Method - -

Summary

- One is not a prime or composite number.
- Two is the only even prime number.
- Not all odd numbers are prime.
(examples: 9, 15, 21, 27, 33, 35, ...)
- All composite numbers can be written as product of prime numbers.

The End

